# Fixed Point

Given a list of unique integers `nums`

sorted in ascending order, return the minimum `i`

such that `nums[i] == i`

. If there’s no solution, return `-1`

.

This should be done in \(\mathcal{O}(log(n))\) time.

**Constraints**

`n ≤ 100,000`

where`n`

is the length of`nums`

https://binarysearch.com/problems/Fixed-Point

## Examples

### Example 1

**Input**

- nums =
`[-5, -2, 0, 3, 4]`

**Output**

- answer =
`3`

**Explanation**

Both `nums[3] == 3`

and `nums[4] == 4`

but `3`

is smaller.

### Example 2

**Input**

- nums =
`[-5, -4, 0]`

**Output**

- answer =
`-1`

**Explanation**

There’s no `i`

such that `nums[i] = i`

.

## Leave a comment