# Quadratic Application

You are given a list of integers `nums`

sorted in ascending order, and integers `a`

, `b`

, and `c`

. Apply the following function for each number `x`

in `nums`

: \(ax^2 + bx + c\) and return the resulting list in ascending order.

This should be done in \(\mathcal{O}(n)\) time.

**Constraints**

`n ≤ 100,000`

where`n`

is the length of`nums`

https://binarysearch.com/problems/Quadratic-Application

## Examples

### Example 1

**Input**

- nums =
`[-2, 3]`

- a =
`1`

- b =
`-3`

- c =
`2`

**Output**

- answer =
`[2, 12]`

**Explanation**

We have

`nums[0] = 1*-2**2 + -3*-2 + 2 = 4 + 6 + 2 = 12`

`nums[1] = 1*3**2 + -3*3 + 2 = 9 + -9 + 2 = 2`

After we sort `[12, 2]`

, we get `[2, 12]`

## Leave a comment